CENTRIFUGAL CHILLERS

MOVE THE WORLD FORW>RD

MITSUBISHI HEAVY INDUSTRIES GROUP

Centrifugal Chiller

We wave a flag for environment protection by energy saving

"Mitsubishi Heavy Industries Centrifugal Chiller" is the best answer for giving due consideration to environment.


Being required for contemporary office buildings, huge shopping malls or factories, it is an environmental protection effort.

Key issue is air-conditioning system, and most important factor is efficiency of chillers used in the system. Our Centrifugal Chiller put drastic energy saving in the place.

Putting in high efficient chillers are not only contributing to environment conservation of

the reduction of CO₂ emissions etc., but also resolve the business challenge of saving operation cost etc.

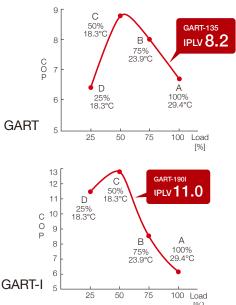
This is the proposal from Mitsubishi Heavy Industries Thermal Systems, Ltd.

Product line

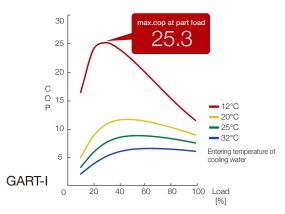
Use	Drive	Series	Refrigerant		100 200 300 400 500	Capacity(RT) * 3 600 700 800 900 1000
	Variable (Built-in Inverter)	ETI-Z New	Low GWP Refrigerant HFO-1233zd(E) HFC-134a	150-700RT 150-700RT	150 350 E T I - Z 150 350 E T I	700 Dual Compressor 700 Dual Compressor
		GART-P GART-R	HFC-134a HFC-134a	500-2700RT 420-1800RT	500 420	GART-P GART-R
Air- Conditioning	Constant	GART-ZE New GART PL type	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	300-5000RT 510-6000RT	300	GART-ZE GART
		GART-PI GART-RI	HFC-134a HFC-134a	500-2700RT 420-1800RT	420	GART-PI GART-RI
	Variable	GART-ZEI New GART-I PL type	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	300-5000RT 510-6000RT	300	GART-ZE I GART-I
		GART-P	HFC-134a	530-630RT 850-900RT 1540-1710RT	53	0 GART-P
Low	Constant	GART-ZE <i>New</i> AART-H / GART	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	260-3100RT 180-400RT/ 400-3000RT	260 180 400 AART-H	GART-ZE GART
Temperature		GART-PI	HFC-134a	530-630RT 850-900RT 1540-1710RT	53	o GART-PI
	Variable	GART-ZE.I <i>New</i> AART-H.I / GART-I	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	260-3100RT 180-400RT/ 400-3000RT	260 180 400 AART-H.I	GART-ZE I GART-I
Heat	Constant	GART-ZE.HR <i>New</i> GART-HR / GART-R.HR / GART-P.HR	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	330-2300RT 400-2300RT	330 400	GART-ZE HR GART-HR
Recovery *1	Variable	GART-ZE.I.HR <i>New</i>	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	330-2300RT 400-2300RT	330 400	GART-ZE I.HR GART-I.HR
Use	Drive	Series	Refrigerant		1000 2000	Capacity (kW) * 3 3000
	Constant	GART-P.HP GART-R.HP	HFC-134a HFC-134a	2100-8800kW 1400-6300kW	1400	GART-P.HP GART-R.HP
Heat		GART-ZE.HP New	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	1200-7000kW 1700-9750kW	1200	GART-ZE.HP GART-HP
Pump *2		GART-P.I.HP GART-R.I.HP	HFC-134a HFC-134a	2100-8800kW 1400-6300kW	1400	2100 GART-P.I.HP GART-R.I.HP
	Variable	GART-ZE.I.HP New GART-I.HP	Low GWP Refrigerant HFO-1234ze (E) HFC-134a	1200-7000kW 1700-9750kW	1200	GART-ZE.I.HP GART-I.HP

*1 Heat Recovery : Simultaneous Operation $\partial 3$ *2 Heat Pump : Switching Operation *3 Capacity range should be changed subject to temperature condition of chilled water, brine or hot water. *4 Control range should be changed subject to temperature condition of brine or hot water.

			T	emperature		Lo	ad		Flow	Bate	
			Chilled Water	Cooling Water	Hot Water	Control	Range		Cooling Water	Chilled	
2000 3000	4000 500	00 6000	Leaving Lower Limit	Entering Lower Limited	Leaving Higher Limit	in a Continuc Standard	ous Operation Option	Control Standard	Range Option	Contro Standard	Range Option
			4°C			100%-10%				100%	-
1800			4°C			100%-20%	-				
2500 GA 3000		000 Dual Compressor 6000 Dual 0	3°C Compressor			100%-20%	100%-10%				
2700 1800			4°C			100%-10%	-				
2500 GAI 3000		000 Dual Compressor 6000 Dual 0	3°C Compressor			100%-10%	100%- ^{approx.} 0%				
1710				12°C		100%-30%	-	100%	Variable Flow Rate	100%	Excess Flow Rate
1500 3000	l Compressor Compressor		Minus 590			100%-30%	100%-10% *4				
1710			Minus 5°C			100%-30%	-				
1500 3000	l Compressor Compressor					100%-30%	100%-10% *4				
2300 2300 2300 2300 2300 2300			3°C		50°C	100%-30%	100%-10% * 4				
				emperature			ad	Chiller	Flow Cooling Water		Weter
7000			Leaving	Cooling Water Entering Lower Limited	Hot Water Leaving Higher Limit	in a Continuc	Range ous Operation	Control	Range		Range
7000 10000 8800 6300			4°C		45°C	Standard	Option -	Standard	Option	Standard	Option
7000			3°C	12°C	50°C	100%-30%	100%-10% *4		Variable Flow		Excess
8800 6300			4°C	12 0	45°C	100% <mark>-30</mark> %	-	100%	Rate	100%	Rate
7000			3°C		50°C	100%-30%	100%-10% *4				


Features of GART series & GART-I series

High Efficiency


- Newly shaped compressor impellers
- Improved evaporators and condensers
- Adoption of a new two-stage-compression/ one-stage-expansion/economizer/ sub-cooler cycle enhanced tracking of load fluctuations

IPLV

IPLV is the formula developed by AHRI to measure the efficiency of chillers under an actual annual operating conditions. IPLV is calculated when the unit is operating at 25%, 50%, 75% and 100% of capacity and at different cooling water temperature. [AHRI Standard 550/590(I-P)]

IPLV: Integrated Part Load Value AHRI: Air-Conditioning, Heating and Refrigeration Institute

IPLV = 0.01A + 0.42B + 0.45C + 0.12D $\begin{array}{l} \mathsf{A}=\mathsf{COP} \text{ at } 100\% \text{ load } (29.4^\circ\text{C}^\circ) \quad \mathsf{B}=\mathsf{COP} \text{ at } 75\% \text{ load } (23.9^\circ\text{C}^\circ) \\ \mathsf{C}=\mathsf{COP} \text{ at } 50\% \text{ load } (18.3^\circ\text{C}^\circ) \quad \mathsf{D}=\mathsf{COP} \text{ at } 25\% \text{ load } (18.3^\circ\text{C}^\circ) \\ \texttt{Lawing temperature of childwater 6.7^\circ\text{C}} \\ \texttt{`: Entering temperature of cooling water } \end{array}$

Co

Compact

- Chiller components are arranged in a way to use vertical space optimally
- Compressors, evaporators and condensers have been reduced in size
- Plate type heat exchanger has been introduced in the economizer

Multifunction Microcomputer Control

Liquid Crystal Display (LCD) with automatic lighting-up function Relight-up by human detection sensor without touching panel

For environmental standards Realize lead-free substrate

RoHS compliant

Separate off control display and circuit box layout of control display is free (GART / GART-I)

Compress	or Runnin	g	
Operation Data (01/	021	14/02/01	
Varie Opening		80,9 %	CHW Leaving Temp
HQBP Opening		8.8%	72°C
High EXV Opening		52.4%	CHIII Entering Temp
Low EXV Opening			12.5°C
CHW Leaving Temp		7.2'0	CLW Leaving Temp
DHW Entering Temp		12.5°C	34.8"C
OLW Leaving Temp		36.8°C	CLIV Entering Temp
OLW Entering Temp		32.0°C	32.0°C
Of Tack Temp		65.8°C	Condenser Press
Condenser Press		0.89MPa	0.89MPa
Evaporator Press		0.23MPa	Evaporator Press
Lube Of Prem		0.54MPa	0.23MPa
Loonomizer Press		0.71MPa	Varie Opening
Motor Current			80.9%
DHW SP Temp		7.0°C	Motor Current
Demand Target		100.0%6	135.4A
TOP	MAIN MENU	PREV PAGE	NEXTPAGE

Display max, 24 data at one time,

	14/02/01 10:25	CHW Leaving Temps
		7.9%
20 20 2 1 1009		CHW Entering Temp
		10.5%
		Condenser Press
		0.84MP/ Evaporator Press
		Cyaporator Press 0.22MP/
		Metor Current
		135.40
-10 -10 0 0 0		Start
		1.00
Stirt		Motor Start Signal
Motor Start Signal	5 m 1	Fakra
Fakre		
Sampling 20 set		Con the second se
	_	
TOP MAIN	MENU	

Real Time Trend Display Display max. 5 operational data and max. 3 situational data by real time trend graph. Displayed data is selectable.

Schedule				
SUN	10:00 - 15:00	20:00 - 22:00	CHW Leaving Temp	
MON				72°C
TUE	10:00 - 20:00	00:00 - 00:00	CHW Entering Temp	
NED.		00:00 - 00:00		12.5"0
			CLW Leaving Temp	
	09:00 - 22:00	00:00 - 00:00		36.8°C
SAT	00:00 - 00:00	00:00 - 00:00	CLW Entering Temp	
1 1				32.0°C
0.00 81.00	99.00 09.00 12.00 15.1	00 18:00 21:00 24:0	Condenser Press	
				0.89MP1
			Evaporator Press	
				0.23MP
			Vene Opening	
				80.9%
			Motor Current	
				13544

Setup Schedule Operation Condition Display Start-Stop set up twice per day, seven days a week can be selected.

A METSUBISHI	<i>i i i i i i i i i i i i i i i i i i i </i>
Compressor Running Training Owgener 110000 Street Street	CHW Lasving Temp 2,2/C CHW Exering Temp 1,2/C CH Lasving Temp 2,8/C
CHAINE CHAINE	CW Extering Temp 12,07C Cond Produce customer Exap Product 2,2200/P Vine Opening 10,9Ps Notor Current 122,AA
Function key	Human detection sensor

- Operation data Failure data
- Real time trend
- (max. 5 operational data and max. 3 situational data)
- Setup schedule operation condition <OPTION>

Failure Data Display

at one time

Fakre Deta			and the second
Senaor Error 004ch		09:48:18	CHINI Leaving Temp
		09:48:18	12.5°C
		09:48:18	CHW Entering Temp
Senaar Error 001ch	14/02/01	09:48:18	12.5°C
Senaar Error 000ch	14/02/01	09:48:18	CLW Leaving Temp
Sensor Error 004ch	14/01/30	16:21:45	32.2°C
Sensor Error 003ch	14/01/30	16:21:45	CLIV Entering Temp
Sensor Error 002ch	14/01/30	16:21:45	32.0°C
Sensor Error 001ch	14/01/30	16:21:45	Condenser Press
Senior Error 000ch	14/01/30	16:21:45	0.35MPa
Safety Device B	14/01/30	15:38:00	Evaporator Press
Safety Device B	14/01/30	15:37:37	0.34MPa
1/L CHW Pump	14/01/30	15:26:28	Varie Opening
Safety Device 8	14/01/30	15:20:34	0.0%
ABNL Valve Link	14/01/30	13:23:22	Motor Current
ABNL Valve Link	14/01/30	13:23:09	0.04

Display max, 16 troubles with data and time

Heat source control system "Ene-Conductor"

Ene-Conducto

- Improvement of system COP by optimal control which gets the best performance out of centrifugal chiller
- Various energy-saving control functions

Significant

Energy Reduction

tal control of heat source system !!

• Remote monitoring

Significant Energy Reduction by total control of heat system ~optimization from individual equipment to whole system

Being required for contemporary office buildings, large shopping malls or factories, it is an environmental protection effort and saving energy but the key issue is the heat source system. Energy-saving had to introduce high efficiency equipment some years ago. However it has to consider energy saving on heat source system levels rather than individual equipment.

Estimation example

Cooling tower Cooling water pump

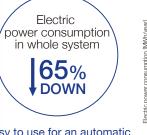
1.200

1.00

800

60

40


201

Improvement in COP of centrifugal chiller
Chilled water variable flow control
Cooling water variable flow control

Chilled water pump Centrifugal chiller

65

Easy to use for an automatic optimization of the whole system

Previous INV centrifugal chiller centrifugal chiller centrifugal chiller EC series


Estimation condition : chiller 400 RT x 2units,Building air conditioner use * Auxiliary equipment : controlled by inverter

Application

Mitsubishi Heavy Industries centrifugal chiller presents more power to your production etc.

Semiconductor Industry

Supply chilled water for manufacturing imaging device like digital camera, LCD and semiconductors.

Automotive Industry

Supply chilled water to the drying oven of painting facility and other manufacturing process.

Air conditioning system for the facility requires high cooling load and constant long annual operating hours.

Clean Room

Special control like temperature, humidity, air purification, air flow and air pressure of the room for the semiconductor factories etc.

Hotel / Office

Constant temperature and humidity control for making comfortable atmosphere at luxury hotels, and office.

Data Center

Requirement in air-conditioning system for data center is reliability, stable supply of chilled water and energy saving.

Supply stable chilled water with high efficiency and continuously.

Food Industry

Prevent breeding various germs by cooling rapidly with nearly zero degree chilled water during process of sterilization of the mineral water manufacturing facility.

Also apply to cool down the water during process.

Supply stable water temperature of 10 to 30°C chilled water for cooling down manufacturing machinery.

Chemical Industry

Chilled water supply for dehumidifying the air at deaerate pre-processing phase during the manufacturing process of oxygen and nitrogen.

Sports Facility

Constant temperature and humidity control for making comfortable atmosphere at gymnasium and training facility. Ice making refrigerating machine at ice skating rink.

District Cooling

District heating and cooling systems (D.H.C) are made up of one or several local plants that produce chilled water and steam for cooling and heating a certain area and hot-water supply, and a network of supply pipes that deliver

these around the clock to a number of buildings. Centrifugal chiller is the core equipment of D.H.C system.

Shopping Mall

High efficiency is important in large shopping mall. High efficiency centrifugal chiller and ice thermal storage system using centrifugal chiller are used,

because share of air-conditioning energy consumption is high for requiring annual cooling and constant long operation hours. The air-conditioning load largely depends on fluctuation of visitors number.

The problem is solved by variable speed drive chiller.

Energy saving example

Sony Group Corporation Sendai Technology Center

Equipment with better energy-saving performance has been installed for the Great East Japan Earthquake (11-Mar-2011) Renovation project.

After

Variable Speed Drive Centrifugal Chiller (Previous Model NART-50I 3units) High efficiency heat source ccontrol system in 2004

Variable Speed Drive Centrifugal Chiller (Existing Model ETI-50 2units)

Ene-Conductor

Average Annual System COP **Annual Power Consumption** After Before h 1618 23% 1600 +Before After 16 DOWN 14 1400 12 1240 System COP[-] 10 Annual Power Consumption[MWH/year] 1200 Cooling Tower 8 Chilled Water Pump 1000 Cooling Water Pump 2 800 0_5 0 25 30 35 5 10 15 20 Outdoor Air Temperature[°C] 600 Annual CO₂ Emission **3 Annual Electricity Cost **4 Chiller 18,853 14,446 884ton 677ton 400 Thousand yen (JPY Before sand yen (JPY) Before After After 200 4.4Thousand yen(JPY)/year ton/year 0 Before^{%5} After DOWN DOWN

*1 Reference: "Energy Saving Performance and Effective Operation Strategies of Cooling Plant System Using an Inverter Chiller for Building Air-Conditioning : Part1, Part2, 47th Academic Papers Award by The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan (SHASE), 2009

*2 Reference: "Development of performance evaluation method for optimal controlled heat source system : Part 2", by Tai (Kyushu University) and other 8 members, , Air-Conditioning and Sanitary Engineers of Japan (SHASE), 2013

*3 CO2 emissions was calculated using CO2 emission factor 0.546kg-CO2/kWh(FY2011 actual record by Tohoku Electric Power Co., Inc.)

*4 Calculated based on high voltage electricity price JPY 11.65/kWh (summer period, June-2013) by Tohoku Electric Power Co., Inc.

*5 Power Consumption (Before) is calculated based on 2012 data divided by 2004 System COP 5.9

(FY2012 Actual Power Consumption x FY2012 Actual COP / 2004 Actual COP)

More than 50 years of experience in air-conditioning and DHC system are reflected to improve performance and reliability of products.

MARINA BAY NEW DOWNTOWN

The first district cooling plant in Marina South New Downtown, Singapore, located in One Ruffles Quay (ORQ) development, has been in operation since May 2006. This plant has high-efficiency chillers with thermal storage systems. Supplies will be extended to the integrated resort, Marina Bay Financial Centre and other new commercial buildings in the Marina Bay area as they are completed over the next few years. The two plants will be interconnected via a chilled water network in the new downtown.

- 853 RT Centrifugal chiller × 1 units
 2,844 RT Centrifugal chiller × 11 units
- 2,000 RT Centrifugal chiller × 2 units
 3,697 RT Centrifugal chiller × 2 units
 5,400 RT Centrifugal chiller × 2 units

(Singapore)

AMARI WATERGATE BANGKOK

Amari Watergate Bangkok is a luxury 5 star hotel located in centre of Bangkok.

New Energy and Industrial Technology Development Organization (NEDO) carried out energy saving model project utilizing Japanese energy conservation technologies. Our centrifugal chillers were adopted as air conditioning system and achieved significant energy reduction.

KUALA LUMPUR CITY CENTER

Kuala Lumpur City Centre (KLCC) area, a prime landmark in Kuala Lumpur, Malaysia's capital city is Kuala Lumpur's main business district, perhaps best known for the PETRONAS Twin Towers: the 452-meter high, 88-storey skyscrapers completed in1997. The area is also home to the Suria KLCC shopping complex, the Aquaria KLCC oceanarium, a park and a philharmonic hall, and as a result it is always crowded with both business persons and visitors. We have received an order for 13 large-size centrifugal chillers, with a total cooling capacity of 36,400 RT.Delivery of the chillers is slated for completion in September 2014.

• 2,800 RT Centrifugal chiller × 13 units

(Malaysia)

© PIXTA

MADINA HAJJ PROJECT

Medina is one of Islam's two holiest cities. By enabling air conditioning of large spaces where vast numbers of pilgrims gather, Our centrifugal chillers will help provide the city's many visitors and residents with a more comfortable environment. The 80 units will deliver a combined cooling capacity of approximately 200,000 RT, The district cooling plant will also supply chilled water to an area of 1.6 million square meters (m²).

(Thailand)

Centrifugal chiller × 80 units (variable speed drive) Total 200,000 RT

(Saudi Arabia)

RAFFLES CITY CHONGQING

Raffles City Chongqing, the new landmark of Chongqing with a total construction area of over 1.12 million sqm, comprises 8 super tower buildings, including high-end residential, shopping malls, office buildings, and international five-star hotel and service apartments. Our centrifugal chillers are adopted by contractors to create clean and comfortable environment by making rational use of regional energy effectively.

- 2,500 RT Centrifugal chiller × 4 units (GART-250P)
- 840 RT Centrifugal chiller × 4 units (GART-80P)

(China)

ASAHI BREWERIES, LTD. IBARAKI BREWERY

Factories of Asahi Breweries make several efforts while protecting important global environment and walking with nature. As one of effort to reduce CO₂ emission, Ibaraki Brewery installed a high efficiency Our Centrifugal Chiller, variable speed drive ETI-Z adopting Low GWP refrigerant. Our Centrifugal Chillers support energy saving of the factory and to prevent global warming. *GWP=Global Warming Potential

• 480 RT Centrifugal chiller (Variable speed drive) × 1 unit (ETI-Z50)


(Japan)

CHINA GUANGZHOU INTERNATIONAL CONVENTION AND EXHIBITION CENTER

Our centrifugal chillers are installed in one of the most famous and elegant exhibition center in the world, which plays a very important role in the Chinese trade market.

Hermetic motor used in 10 kV / 50 Hz* power source.

- (except for 380 RT below) *Hermetic motor used in 11 kV / 50 Hz available.
- 380 RT Centrifugal chiller × 1 unit
- 1,000 RT Centrifugal chiller × 2 units
- 2,000 RT Centrifugal chiller × 8 units

(China)

MINATO MIRAI 21

Our 13 Centrifugal Chillers are installed in MM21 DHC Plant where "Land Mark Tower" and "Queens Square" are located.

- 2,000 RT Centrifugal chiller × 1 unit
- 2,080 RT Centrifugal chiller × 1 unit
- 3,000 RT Centrifugal chiller \times 3 units
- 4,000 RT Centrifugal chiller × 1 unit
 4,400 RT Centrifugal chiller × 1 unit
- 5,000 RT Centrifugal chiller × 1 unit
- 5,400 RT Centrifugal chiller × 3 units
- 5,400 RT Centrifugal chiller × 2 units (variable speed drive)

(Japan)

Centrifugal Chiller

Mitsubishi Heavy Industries Thermal Systems, Ltd.

(Wholly-owned subsidiary of MITSUBISHI HEAVY INDUSTRIES, LTD.)

2-3, Marunouchi 3-chome, Chiyoda-ku, Tokyo, 100-8332, Japan https://www.mhi-mth.co.jp/en/

